|
|

楼主 |
发表于 2009-9-27 08:34
|
显示全部楼层
风险的度量----------R乘数
这里是借用。
设下行波上的点集为{Dki}={Ds,…,Df},相应后面的上行波点集为{Uki}={Us,…Uf},采用价格距离:DfUs=价Us-价Df。
初始风险为=|DfUs|,称为1R。实际上1R=UsDf。实际操作时,有个别特殊情况需要关注,需要注意,否则要吃到大于1R的亏损。
把一次交易的风险回报率称作一个“R乘数”,R仅仅是初始风险的一个表示符号。要计算一次交易的R乘数,只需在抛出该头寸时把捕获的点数除以初始风险就可以了。这里:
R乘数=DfUf/1R=(Uf-Df)/(Df-Us)。
当三角形UsDfUf下摆时,我们得到一个亏损R乘数交易。
根据SAR指标,多数情况下,这是一个大于-R的乘数。实际上,这是寻找大R的好方法,实际上大多数为≤|1R|的交易,而我们可以寻找到nR的交易(n>1),显然这些都是盈利的交易。这是跟我们的方法分不开的。
很多构成历史性的模拟或者先前交易结果的不同R乘数是你期望收益的组成部分。这些R乘数的本质特性将会完全决定你所用方法的全部期望收益。它有助于你确定正确的财务管理法则,并应用到交易方法中去,以达到你所有的目标。说到R乘数的本性,我指的是大小、频率和不同R乘数的顺序。
试想,把系统的交易当作只是一些R乘数。然后假设每次交易只是简单地从一个袋里掏出的一个弹球。一旦你捞出了这个弹球后,就能确定它的R乘数,然后再把它放回到袋里。
玩这个游戏的时候.你需要开发一个有助于你利用期望收益的头寸调整运算法则。另外,你还希望该法则与每次交易的初始风险和正在进行中的账户资本有一定的相关性。对初涉者来说.可以考虑一个风险百分率运算法则,依据它来连续投资当前账户资本的一个固定百分比、这种头寸调整运算法则基本上就表示这个1R风险是相同的,而不管什么时候用它或者用在哪种股票或市场上。这是因为你的头寸大小一直是你资本的一个固定的百分比(比如说1%),而无论初始风险(R)有多大。
此外,你想考虑一下被抓出来的弹球的可能分布,也就是顺序系统的盈利百分比与一连串的亏损交易的长度成反比,因此、你需要一个头寸调整的运算法则,以使你能撤出可能的一连串亏损交易并仍然能利用大的盈利进行交易。
很多交易商未能利用健全的系统进行交易。这是因为:
(1 )他们没有以他们的方法为市场带给他们的交易分布做好准备。
(2)他们过度使用了杠杆作用或投资不足。给定了系统的盈利几率后,你就可以估计1000次试验中可能的最大连续亏损交易数,但是你无法真正知道“确定的”值。例如,即使是抛硬币也可能多次产生正面朝上的情况。
总结一下有以下规则:
(1)确定将要被抓出来的盈利弹球的时间;
(2)决定在游戏中的某一未来时刻以违反期望收益的方式下赌,因此,他们从中获得了收益。如果这一连串的亏损在游戏中恰好发生得较早,那么第(2) 比较适用。如果这一连串的亏损在游戏中恰好发生得较晚,则第(1 条更适用些。有些参加者的心理迫使他们交易亏损越多。下的赌注越大,因为他们“认为”一次盈利就“躲在某一角落里”。我确信你能够猜出这样一个游戏的一般结果。
当然可以对上述游戏每次以当前资本的固定百分比下注的资本曲线如果你想更好地了解这个系统是如何工作的.可能至少需要评估10倍以上次交易。到那时才能做出一个更好的关于头寸调整(这里是赌注调整)的运算法则并确定杠杆水平。此外,我们还能够测试一下此系统在未来交易中的作用。我们可以对能设想到的、将来可能发生的很多情形进行心理演练的培养,就是训练我们在那种情形发生时应该做出的反应。记住,即使是这样你也并不能确切知道这个弹球袋或者市场将会表现出什么结果。这就是为什么你的心理演练过程应包括一部分训练自己怎样对突发事件做出反应的内容。
游戏毕竟是游戏,要使这个系统盈利仍然必须做很多工作。 |
-
查看全部评分
|
|