当你拥有原子理论的时候-----制造原子弹,是迟早的事情;当你拥有中枢理论的时候-----成为大富豪,是早晚的问题!-----南阳龙
技术分析一
分型、笔
今天开始讲技术分析,我们将按照最基本的线路图:“分型-笔-线段-最小级别中枢-各级别中枢-走势类型”来逐步展开“市场哲学的数学原理”系列。这几个东西,是形态学中最基本的,完全没有办法再简略了,所以无论多懒,如果真想学,请先把这几样东西搞清楚。而如果分型、笔、线段这最基础的东西没搞清楚,不能做到在任何时刻,面对任何最复杂的图形当下地进行快速正确的分解,说要掌握总体的理论,那纯粹是瞎掰。
买卖点不要着急,那个只需要加上动力学的一些简单内容即可,动力学真正复杂的是在行情转换和期货市场中,这个后面慢慢会谈到。
下面的定义与图,都适合任何周期的K线图。图中的小线段代表的是K线,这里不分阳线阴线,只看K线高低点。
像图1这种,第二K线高点是相邻三K线高点中最高的,而低点也是相邻三K线低点中最高的,定义为顶分型;图2为底分型,第二K线低点是相邻三K线低点中最低的,而高点也是相邻三K线高点中最低的。
顶分型的最高点叫该分型的顶,底分型的最低点叫该分型的底,由于顶分型的底和底分型的顶是没有意义的,所以顶分型的顶和底分型的底就可以简称为顶和低。以后说顶和底时,就指的是顶分型的顶和底分型的底。
两个相邻的顶和底之间构成一笔,所谓笔,就是顶和底之间的其他波动,都可以忽略不算,但注意,一定是相邻的顶和底,隔了几个就不是了。而所谓的线段,就是至少由三笔组成。但这里有一个细微的地方要分清楚,因为结合律是必须遵守的,像图3这种,顶和底之间必须共用一个K线,这就违反结合律了,所以这不算一笔,而图4,就光是顶和底了,中间没有其他K线,一般来说,也最好不算一笔,而图5,是一笔的最基本的图形,顶和底之间还有一根K线。在实际分析中,都必须要求顶和底之间都至少有一K线当成一笔的最基本要求。
当然,实际图形里,有些复杂的关系会出现,就是相邻两K线可以出现如图6这种包含关系,也就是一K线的高低点全在另一K线的范围里,这种情况下,可以这样处理,在向上时,把两K线的最高点当高点,而两K线低点中的较高者当成低点,这样就把两K线合并成一新的K线;反之,当向下时,把两K线的最低点当低点,而两K线高点中的较低者当成高点,这样就把两K线合并成一新的K线。经过这样的处理,所有K线图都可以处理成没有包含关系的图形。
而图7,就给出了经过以上处理,没有包含关系的图形中,三相邻K线之间可能组合的一个完全分类,其中的二、四,就是分别是顶分型和底分型,一可以叫上升K线,三可以叫下降K线。所以,上升的一笔,由结合律,就一定是底分型+上升K线+顶分型;下降的一笔,就是顶分型+下降K线+底分型。注意,这里的上升、下降K线,不一定都是3根,可以无数根,只要一直保持这定义就可以。当然,简单的,也可以是1、2根,这只要不违反结合律和定义就可以。
对于分型,里面最大的麻烦,就是所谓的前后K线间的包含关系,其实,有点简单的几何思维,根据定义,任何人都可以马上得出以下的一些推论:
1、用[di,gi]记号第i根K线的最低和最高构成的区间,当向上时,顺次n个包含关系的K线组,等价于[maxdi,maxgi]的区间对应的K线,也就是说,这n个K线,和最低最高的区间为[maxdi,maxgi]的K线是一回事情;向下时,顺次n个包含关系的K线组,等价于[mindi,mingi]的区间对应的K线。
2、结合律是理论中最基础的,在K线的包含关系中,当然也需要遵守,而包含关系,不符合传递律,也就是说,第1、2根K线是包含关系,第2、3根也是包含关系,但并不意味着第1、3根就有包含关系。因此在K线包含关系的分析中,还要遵守顺序原则,就是先用第1、2根K线的包含关系确认新的K线,然后用新的K线去和第三根比,如果有包含关系,继续用包含关系的法则结合成新的K线,如果没有,就按正常K线去处理。
3、有人可能要问,什么是向上?什么是向下?其实,这根本没什么可说的,任何看过图的都知道什么是向上,什么是向下。当然,作为严格的几何理论,对向上向下,也可以严格地进行几何定义,只不过,这样对于不习惯数学符号的人,头又要大一次了。
假设,第n根K线满足第n根与第n+1根的包含关系,而第n根与第n-1根不是包含关系,那么如果gn>=gn-1,那么称第n-1、n、n+1根K线是向上的;如果dn<=dn-1,那么称第n-1、n、n+1根K线是向下的。
有人可能又要问,如果gn<gn-1且dn>dn-1,算什么?那就是一种包含关系,这就违反了前面第n根与第n-1根不是包含关系的假设。同样道理,gn>=gn-1与dn<=dn-1不可能同时成立。
上面包含关系的定义已经十分清楚,就是一些最精确的几何定义,只要按照定义来,没有任何图是不可以精确无误地、按统一的标准去找出所有的分型来。注意,这种定义是唯一的,有统一答案的,没有任何含糊的地方,是可以在当下或任何时候明确无误地给出唯一答案的,这答案与时间无关,与人无关,是客观的,不可更改的,唯一的要求就是被分析的K线已经走出来。
从这里,理论的当下性也就有了一个很客观的描述。为什么要当下的?因为如果当下那些K线还没走出来,那么具体的分型就找不出来,相应的笔、线段、最低级别中枢、高级别走势类型等就不可能划分出来,这样就无从分析了。而一旦当下的K线走出来,就可以当下按客观标准唯一地找出相应的分型结构,当下的分析和事后的分析,是一样的,分析的结果也是一样的,没有任何的不同。因此,当下性,其实就是本理论的客观性。
有人可能要问,如果看30分钟图,可能K线一直犬牙交错,找不到分型。这有什么奇怪的,在年线图里,找到分型的机会更小,可能十几年找不到一个也很正常,这还是显微镜倍数的比喻问题。确定显微镜的倍数,就按看到的K线用定义严格来,没有符合定义的,就是没有,就这么简单。如果希望能分析得更精确,那就用小级别的图,例如,不要用30分钟图,用1分钟图,这样自然能分辨得更清楚。再次强调,用什么图与以什么级别操作没任何必然关系,用1分钟图,也可以找出年线级别的背驰,然后进行相应级别的操作。看1分钟图,并不意味着一定要玩超短线,把显微镜当成被显微镜的,肯定是脑子水太多了。
从分型到笔,必须是一顶一底。那么,两个顶或底能构成一笔吗?这里,有两种情况,第一种,在两个顶或底中间有其他的顶和底,这种情况,只是把好几笔当成了一笔,所以只要继续用一顶一底的原则,自然可以解决;第二种,在两个顶或底中间没有其他的顶和底,这种情况,意味着第一个顶或底后的转折级别太小,不足以构成值得考察的对象,这种情况下,第一个的顶或底就可以忽略其存在了,可以忽略不算了。
所以,根据上面的分析,对第二种情况进行相应处理(类似对分型中包含关系的处理),就可以严格地说,先顶后底,构成向下一笔;先底后顶,构成向上一笔。而所有的图形,都可以唯一地分解为上下交替的笔的连接。显然,除了第二种情况中的第一个顶或底类似的分型,其他类型的分型,都唯一地分别属于相邻的上下两笔,是这两笔间的连接。用一个最简单的比喻,膝盖就是分型,而大腿和小腿就是连接的两笔。
[ 本帖最后由 zhwl6000 于 2009-9-15 07:11 编辑 ] |